

Published on Web 04/22/2010

Tandem β -Alkylation- α -Arylation of Amines by Carbolithiation and Rearrangement of *N*-Carbamoyl Enamines (Vinyl Ureas)

Jonathan Clayden,* Morgan Donnard, Julien Lefranc, Alberto Minassi, and Daniel J. Tetlow

School of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, U.K.

Received February 8, 2010; E-mail: clayden@man.ac.uk

The construction of tertiary alkylamines¹ is a synthetic challenge exacerbated by the poor electrophilicity of imines.^{1e} Umpolung² approaches to the problem involving electrophilic attack on a nitrogenstabilized carbanion³ are a solution, and the use of nitroalkenes allows tandem addition of substituents β and α to a nitrogen function.⁴ In this paper, we report our discovery that *N*-carbamoyl enamines (*N*-alkenyl ureas) likewise exhibit umpolung reactivity, undergoing addition of organolithiums to their otherwise nucleophilic β -carbons. The addition can be coupled with N \rightarrow C aryl transfer within the lithiated urea intermediate,^{5,6} allowing two new C–C bonds to the α and β carbons of the alkene to be formed in a single pot.

Alkenyl urea **1a** was treated with *t*-BuLi in THF for 1 h at -78 °C. After the reaction was quenched with methanol, a single addition product **2a** was obtained in 77% yield (Scheme 1); evidently, regioselective carbolithiation of **1** occurs readily under these conditions, presumably yielding initially a proposed benzylic organolithium **3** (R = *t*-Bu). Repeating the reaction with less hindered organolithiums revealed further unconventional reactivity. With *n*-butyllithium, the rearranged product **4a** was obtained from **1** by N \rightarrow C migration of the *N*-phenyl ring of **3**.⁵ The product **4a** was straightforwardly converted to the tertiary alkyl amine **5a** by heating in *n*-BuOH for 2.5 h,⁷ indicating that this "alkylarylation" of enamine **1a** could constitute a useful new method for the construction of multiply branched alkylamines.

Scheme 1. Umpolung Carbolithiation of Vinyl Ureas

Other *N*-vinyl ureas 1b-g were made by *N*-carbamoylation of imines **6** and alkylation of the resulting ureas (Scheme 1). Table 1 shows the results of treating these *N*-vinyl ureas **1** with a range of organolithiums RLi in THF at -50 °C for 90 min.⁸ In each case, carbolithiation followed by *N*-aryl migration resulted in tandem addition of two carbon substituents, R and Ar², across the electron-rich enamine double bond. Yields were good to excellent, and a range including methyl-, *n*- and *sec*-alkyl-, alkenyl-, and aryllithiums could be successfully added to the ureas.⁹ Migration of a phenyl ring was generally faster and cleaner⁸ than migrations of other (generally electron-rich) substituted aryl groups, and where a product could be

made in two ways by exchanging Ar^{1} and Ar^{2} , the alternative with the more electron-rich Ar^{1} group was preferable. Unsaturated products **4i** and **4j** containing alkene or carbonyl functions were available by addition of vinyllithium or ethoxyvinyllithium.

Table 1. Organolithium Additions to Vinyl Ureas 1

entry	s.m.	Ar ¹	Ar ²	R	4, yield (%)
1	1a	Ph	Ph	Bu	4a , 72 ^a
2	1a	Ph	Ph	Me	4b , 78 ^b
3	1a	Ph	Ph	<i>i</i> -Pr	4 c, 74
4	1a	Ph	Ph	s-Bu	4d , 74
5	1a	Ph	Ph	Ph	4e , 77 ^c
6	1b	Ph	p-MeOC ₆ H ₄	<i>i</i> -Pr	4f , 75
7	1c	Ph	p-ClC ₆ H ₄	<i>i</i> -Pr	4g , 72
8	1d	p-MeOC ₆ H ₄	Ph	<i>i</i> -Pr	4f , 77
9	1e	$p-ClC_6H_4$	Ph	<i>i</i> -Pr	4g , 86
10	1f	p-FC ₆ H ₄	Ph	Ph	4h , 78
11	1g	p-Tol	Ph	$-CH_2=CH_2$	4i , 75
12	1g	p-Tol	Ph	$-CH(OEt)=CH_2$	4j , 96 ^d

^{*a*} Deprotected to yield amine **5a** (82%). ^{*b*} Deprotected to yield amine **5b** (76%). ^{*c*} Deprotected to yield amine **5e** (74%). ^{*d*} Mixture of **4j** and a pyrimidinedione (see the Supporting Information).

Treating the propiophenimines **7** with aryl isocyanates gave vinyl ureas **8** with >96:4 *E*/*Z* selectivity (Scheme 2).¹⁰ Methylation returned the alkenyl ureas **9** also as >96% *E* isomer. The *Z* isomers of **9** were available by a parallel route from allylamines **10**,¹¹ which gave allylic ureas **11** upon treatment with aryl isocyanates. Methylation of **11** was accompanied by double-bond migration to give the ureas **9** with 98:2 *Z*/*E* selectivity.¹² (*Z*)-**9** can alternatively be made directly from (*E*)-**9** by formation of a (*Z*)-allyl anion represented as **12** (M = Li; X = Me): treatment of (*E*)-**9a** with LDA followed by methanol led to some decomposition but gave (*Z*)-**9a** with 98:2 *Z*/*E* selectivity.¹³

Scheme 2. Synthesis of (E)- and (Z)-Alkenyl Ureas

In THF at -40 °C, alkyllithiums RLi underwent clean addition to (*E*)-alkenyl ureas **9a**-**d** (which have $Ar^2 = Ph$) and gave carbolithiation-rearrangement products **13a**-**e** as single diastereoisomers (Table 2, entries 1–5). Ureas **13a**-**e** were readily converted to single diastereoisomers of the amines **14** in refluxing *n*-butanol (Scheme 3).⁷ The relative configuration of amine **14a** was confirmed by an X-ray crystal structure¹⁴ of its hydrochloride salt **14a**·HCl (Scheme 3), which showed that **13** and hence **14** are formed by syn addition of R and Ar². As expected, transposition of Ar¹ and Ar² within the starting material led to an inversion of

Table 2. Organolithium Additions to Vinyl Ureas 9

entry	s.m.	$\begin{array}{c} X \text{ in} \\ Ar^1 = C_6 H_4 X \end{array}$	$\begin{array}{c} Y \text{ in} \\ Ar^2 = C_6 H_4 Y \end{array}$	R	13 or 15, yield (%)	14, yield (%)
1	(E)- 9a	p-Cl	Н	<i>i</i> -Pr ^a	13a, 81	14a, 66
2	(E)- 9a	p-Cl	Н	<i>n</i> -Bu ^{<i>a</i>}	13b, 70	14b, 73
3	(E)- 9b	p-F	Н	<i>i</i> -Pr ^a	13c, 69	14c, 75
4	(E)-9c	<i>p</i> -Me	Н	<i>i</i> -Pr ^a	13d, 60	14d, 70
5	(E)-9d	<i>p</i> -MeO	Н	<i>i</i> -Pr ^a	13e, 76	14e, 70
6	(E)- 9e	Ĥ	p-MeO	<i>i</i> -Pr ^b	epi-13e, 60	epi-14e, 70
7	(E)- 9f	Н	<i>m</i> -MeO	<i>i</i> -Pr ^b	13f , 60	14f , 69
8	(E)- 9f	Η	m-MeO	n-Bu ^b	13g, 65	_
9	(Z)-9a	p-Cl	Н	i-Pr ^b	epi-13a, 75	<i>epi-</i> 14a , 67
10	(Z)-9e	Ph	p-MeO	<i>i</i> -Pr ^b	13e , 54	14e , 70
11	(E)- 9e	Ph	p-MeO	i-Pr ^c	15a, 85	
12	(E)- 9e	Ph	p-MeO	n-Bu ^d	15b, 85	
13	(Z)-9e	Ph	p-MeO	<i>i</i> -Pr ^a	epi-15a, 44	
14	(E)- 9f	Ph	m-MeO	<i>i</i> -Pr ^c	15c, 83	
15	(E)- 9f	Ph	m-MeO	n-Bu ^d	15d, 85	
16	(E)- 9f	Ph	m-MeO	<i>t</i> -Bu ^{<i>a</i>}	15e , 60	
			<i>L</i>			

^a THF, -40 °C, 3-6 h. ^b (1) Tol, -40 °C, 1 h; (2) DMPU, -40 to +25 °C, 16 h. ^c Tol, -40 °C, 1-2 h. ^d Et₂O, -40 °C, 90 min.

Scheme 3. Stereospecific Reactions of (E)- and (Z)-Alkenyl Ureas

the relative configuration of the product (entries 5 and 6): the products from (E)-9d and (E)-9e are epimeric. The migrations of the more electron-rich rings of 9e and 9f were slower, and the best yields of 13f and 13g were obtained by carrying out the carbolithiation at -40 °C in toluene and adding DMPU to enforce rearrangement after the carbolithiation was complete (entries 6-8).^{5a,15} Epimeric products were also formed when E starting materials were replaced with their Z isomers (entries 9 and 10). Thus, addition of *i*-PrLi to the Z isomer of **9e** yielded **13e**, which is epimeric with *epi*-13e derived from (*E*)-9e and identical to that produced from the "ring-transposed" (E)-9d.

Carbolithiation and rearrangement of 9 is slower than that of 1. With 9e and 9f, the electron-rich aryl rings failed to migrate in the absence of DMPU,¹⁵ and it was possible to isolate products 15 resulting from carbolithiation without rearrangement, even in THF (entries 11–16). Epimeric products were produced from (E)- and (Z)-9f.

Evidently, both the carbolithiation and aryl migration steps are stereospecific,¹⁶ since either inverting the double-bond geometry in the starting material or exchanging the substituents Ar¹ and Ar² changes the configuration of the products. The crystal structure of 14a indicates that the addition-migration process is mechanistically suprafacial. We propose that the reactions proceed by umpolung carbolithiation^{17,18} of 9 (Scheme 4) to give a substituted benzyllithium 16 that is configurationally stable19 on the time scale of the reaction. With electron-rich Ar², 16 may be trapped as 15 by retentive protonation.^{17c,18a} In general, however, benzyllithium 16 undergoes retentive 5a,20 N \rightarrow C aryl migration by attack of the organolithium center on the N-aryl ring Ar^2 (17), transferring Ar^2 to the position α to N and yielding lithiourea 18 and hence 13 upon protonation.

This new reaction allows the "1,2-alkylarylation" of a ureasubstituted alkene and provides a valuable method for the construcScheme 4. Proposed Mechanism

tion of heavily substituted amines from four components: a ketone, an amine, an isocyanate, and an organolithium.

Acknowledgment. We thank the EPSRC for a research grant and a studentship (to D.J.T.) and AstraZeneca for financial support under the collaborative EPSRC Programme for Synthetic Organic Chemistry with AZ-GSK-Pfizer.

Supporting Information Available: Full experimental procedures, characterization data for all compounds, and crystallographic data for 14a · HCl (CIF). This material is available free of charge via the Internet at http://pubs.acs.org.

References

- (1) (a) Riant, O.; Hannedouche, J. Org. Biomol. Chem. 2007, 5, 873. (b) Shibasaki, M.; Kanai, M. Chem. Rev. 2008, 108, 2853. (c) Kobayashi, S.; Ishitani, H. Chem. Rev. 1999, 99, 1069. (d) Cogan, D. A.; Ellman, J. A. J. Am. Chem. Soc. 1999, 121, 268. (e) Bloch, R. Chem. Rev. 1998, 98, 1407.
- (2) Seebach, D. Angew. Chem., Int. Ed. 1979, 18, 239.
- Gawley, R. E.; Coldham, I. In Chemistry of Organolithium Compounds; Rappoport, Z., Marek, I., Eds.; Wiley: Chichester, U.K., 2004; pp 997– 1054; (b) Beak, P.; Johnson, T. A.; Kim, D. D.; Lim, S. H. Top. Organomet. *Chem.* **2003**, *5*, 139. Perekalin, V. V.; Lipina, E. S.; Berestovitskaya, V. M.; Efrenov, D. A.
- (4)Nitroalkenes; Wiley: New York, 1994. (b) Dumez, E.; Faure, R.; Dulcère, J.-P. *Eur. J. Org. Chem.* **2001**, 2577, and references therein. (a) Clayden, J.; Dufour, J.; Grainger, D.; Helliwell, M. J. Am. Chem. Soc.
- (5)2007, 129, 7488. (b) Clayden, J.; Hennecke, U. Org. Lett. 2008, 10, 3567. (c) Bach, R.; Clayden, J.; Hennecke, U. Synlett 2009, 421.
- (6) Clayden, J.; Farnaby, W.; Grainger, D. M.; Hennecke, U.; Mancinelli, M.; Tetlow, D. J.; Hillier, I.; Vincent, M. J. Am. Chem. Soc. 2009, 131, 3410.
- For deprotection of ureas by neutral solvolysis, see: (a) ref 5b; (b) Hutchby, M.; Houlden, C. E.; Ford, J. G.; Tyler, S. N. G.; Gagné, M. R.; Lloyd-Jones, G. C.; Booker-Milburn, K. I. *Angew. Chem., Int. Ed.* **2009**, *48*, 8721.
- (8) At-78 °C, yields were generally lower, and at least 2 h was required for completion, except in the case of a migrating Ph group, which proceeded within 2 h at-78 °C
- (9) Furyllithium and alkynyllithiums failed to add to 1. Phenyllithium and vinyllithium, which added cleanly to 1, failed to add to 9.
- (10) A review of enamides: Carbery, D. *Org. Biomol. Chem.* 2008, *6*, 3455.
 (11) Allylamines 10 were made by Overman rearrangement of the cinnamyl
- alcohols (see the Supporting Information). (12) We ascribe both the double-bond isomerization and the Z selectivity to
- deprotonation α to nitrogen by NaH to yield allyl anions represented as 12 (M = X = Na), which prefer a Z configuration. See: (a) Price, C. C.; Snyder, W. R. Tetrahedron Lett. 1962, 3, 69. (b) Beak, P.; Lee, B. J. Org. Chem. 1989, 54, 458. (c) Katritzky, A. R.; Piffl, M.; Lang, H.; Anders, E. Chem. *Rev.* 1999, 99, 665. Presumably, γ -deprotonation to give the same dianion from 8 is slower.
- (13) The alkene geometry was confirmed in each case by NOE studies and, for (*E*)- and (*Z*)-**9a**, by X-ray crystallography.
- (14) The X-ray crystallographic data has been deposited with the Cambridge Crystallographic Data Centre under deposition number 762201
- (15) The coordinating cosolvent DMPU typically accelerates nucleophilic attack of organolithiums on aromatic rings. See: Clayden, J.; Parris, S.; Cabedo, N.; Payne, A. H. Angew. Chem., Int. Ed. 2008, 47, 5060, and references therein. (16) In the sense of Zimmerman (see: Zimmerman, H. E.; Singer, L.;
- Thyagarajan, B. S. J. Am. Chem. Soc. 1959, 81, 108). (17) (a) Hogan, A.-M. L.; O'Shea, D. F. Chem. Commun. 2008, 3891, and
- references therein. (b) Clayden, J. Organolithiums: Selectivity for Synthesis; Pergamon: Oxford, U.K., 2002; pp 273-281; (c) Norsikian, S.; Marek, I.; Klein, S.; Poisson, J.-F.; Normant, J. F. Chem.-Eur. J. 1999, 5, 2055.
- (18) For related carbolithiations of acylated enols and enamines, see: (a) Peters, J. G.; Seppi, M.; Fröhlich, R.; Wibbeling, B.; Hoppe, D. Synthesis 2002, 381. (b) Cottineau, B.; Gillaizeau, I.; Farard, J.; Auclair, M.-C.; Coudert, G. Synlett **2007**, 1925. (c) Lepifre, F.; Cottineau, B.; Mousset, D.; Bouyssou, P.; Coudert, G. Tetrahedron Lett. 2004, 45, 483.
- (19) Basu, A.; Thayumanavan, S. *Angew. Chem., Int. Ed.* 2002, *41*, 716.
 (20) By application of "Ockham's razor" (Hoffmann, R. *Bull. Soc. Chim. Fr.* 1996, 133, 117), we discount an alternative combination of anti carbolithation followed by invertive rearrangement (ref 6). See: Clayden, J.; Helliwell, M.; Pink, J. H.; Westlund, N. J. Am. Chem. Soc. 2001, 123, 12449.
- JA1007992